

REGULAR PAPERS

Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO₂ nanoparticles

To cite this article: Ming-Chung Wu et al 2017 Jpn. J. Appl. Phys. 56 04CJ01

View the article online for updates and enhancements.

Related content

- Niobium doping induced morphological changes and enhanced photocatalytic Ming-Chung Wu, Ting-Han Lin, Jyun-Sian Chih et al.
- Photocatalytic performance of Fe-doped TiO2 nanoparticles under visible-light T Ali, P Tripathi, Ameer Azam et al.
- Photocatalytic Activity of N-doped TiO2 Photocatalysts Prepared from the Molecular Precursor (NH₄)₂TiO(C₂O₄)₂ Jing Bu, Jun Fang, Fu-cheng Shi et al.

Recent citations

- Photocatalytic Performance of Cu-doped TiO 2 Nanofibers Treated by the Hydrothermal Synthesis and Air-thermal Treatment
Ming-Chung Wu et al

Bismuth doping effect on crystal structure and photodegradation activity of Bi-TiO₂ nanoparticles

Ming-Chung Wu^{1,2,3*}, Yin-Hsuan Chang¹, and Ting-Han Lin¹

¹Department of Chemical and Materials Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan

Received October 12, 2016; accepted November 20, 2016; published online January 17, 2017

The bismuth precursor is adopted as dopant to synthesize bismuth doped titanium dioxide nanoparticles (Bi-TiO₂ NPs) with sol-gel method following by the thermal annealing treatment. We systematically developed a series of Bi-TiO₂ NPs at several calcination temperatures and discovered the corresponding crystal structure by varying the bismuth doping concentration. At a certain 650 °C calcination temperature, the crystal structure of bismuth titanate (Bi₂Ti₂O₇) is formed when the bismuth doping concentration is as high as 10.0 mol %. The photocatalytic activity of Bi-TiO₂ NPs is increased by varying the doping concentration at the particular calcination temperature. By the definition X-ray diffraction (XRD) structural identification, a phase diagram of Bi-TiO₂ NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in the crystal structure engineering and the development of photocatalyst. © 2017 The Japan Society of Applied Physics

1. Introduction

Photocatalysts have raised a lot of interests to study due to the contribution to organic pollutant decomposition and the renewable energy production. 1-4) Among various photocatalysts, TiO2 is widely used because of its giant advantages, such as environmentally friendly, chemical and thermal stability, low cost, highly active photocatalytic property and non-toxic to human.⁵⁻⁹⁾ TiO₂ also can be used in photovoltaic device electrode, photocatalytic hydrogen production and environmental pollution management. 10-16) Three kinds of TiO₂ crystal structures are formed in nature, including anatase, rutile and brookite. 17,18) Anatase and rutile are the most common crystal structures in TiO2 presented in tetragonal arrangement, and they are often used to prepare high performance photocatalyst. It is a n-type semiconductor material with wide bandgap. However, its wide band gap (anatase $\sim 3.2 \,\mathrm{eV}$; rutile $\sim 3.0 \,\mathrm{eV}$) is located at ultraviolet light irradiation. ^{19,20)} There is a practical application gap if the fine material/device of TiO₂ is usually exposed under sun light. Thus, the doping of metal ions into TiO₂ has been studied to enhance the absorption ability over the visible light spectrum.^{21–24)}

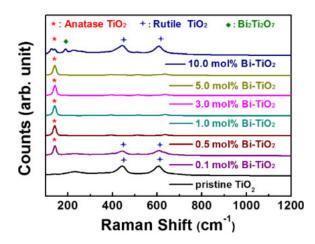
In recent years, Bi–TiO₂ material has been applied in many applications. The fabricated all-oxide solid-state dye-sensitized solar cells (DSSCs) with Bi–TiO₂ nanorods reveals high power conversion efficiency due to the high dye loading, slower charge recombination rate and the high electrical conductivity. Bi–TiO₂ nanofibers is applied as the scattering layer of DSSCs, and it can enhance the open-circuit voltage successfully. Bi–TiO₂ nanofibers fabricated by the hydrothermal method exhibits an enhancement for the photodegradation of organic dye and the photocatalytic hydrogen generation. Doping bismuth ion into TiO₂ nanoparticles prepared by sol–gel method can narrow the bandgap of TiO₂ and improve the CO₂ adsorption ability. Turthermore, Bi–TiO₂ can enhance ethanol oxidation and photoinduced hydrogen evolution. Sec. 29)

Doping bismuth ion into TiO_2 was studied in the relationship between crystal structure and photocatalytic activity. ^{24–31)} For the Bi– TiO_2 nanofibers synthesized by a

hydrothermal method, a small part of Bi transformed to Bi_2O_3 when the doping concentration reached $10.00\,\mathrm{mol}\,\%.^{24}$ The Bi–TiO $_2$ nanotubes synthesized by sol–gel method appears rutile TiO $_2$ phase, and it can enhance the photocatalytic activity. In addition, the Bi–TiO $_2$ hollow thin sheets prepared by the hydrothermal synthesis also detected a small amount of Bi_2O_3 phase, and it significantly enhanced the photocatalytic performance under visible light irradiation. In summary of these studies, bismuth doping plays an important role in improving the photocatalytic activity and electro-optical characteristics. However, the bismuth doping effect on the crystal structure of Bi–TiO $_2$ is rarely studied. Hence, our study focus on the correlation between the crystal structure and bismuth doping concentration at various calcination temperatures.

In our study, various Bi–TiO₂ NPs were synthesized by sol–gel method followed by thermal treatment. Bi–TiO₂ NPs were investigated systematically by X-ray diffraction (XRD) to realize the correlation between bismuth doping concentration and its corresponding crystal structure at elevated calcination temperature. A phase diagram for Bi–TiO₂ NPs in doping concentration versus calcination temperature is illustrated to know the applicable window. It is useful for further study in the crystal structure and photocatalytic applications.

2. Experimental procedure


Various bismuth doped titanium oxide gels were prepared by sol–gel method using 36.00 ml titanium isopropoxide [Ti(OCH(CH₃)₂)₄, Sigma-Aldrich, 97%] with several amounts of bismuth nitrate (Acros Organics, 99.999%) as the precursor and 107.50 ml 2-propanol (C₃H₇OH, Acros Organics, reagent grade) as the solvent. Aiming to control the pH level, 5.00 ml hydrochloric acid (Acros Organics, 37%) was added to the solution. After that, 1.00 ml deionized water was added to the well mixed solution. The solution was then kept at room temperature to be a gel. After gelation, titanium oxide gel was first calcined under 200 °C to reduce organic compound. Then, the powder was kept calcined under 450, 500, 550, 600, 650, and 700 °C, for 4 h, and its heating rate is 5 °C/min.

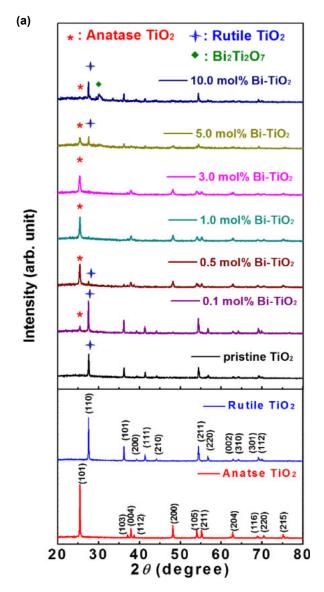
For Raman scattering measurements of various Bi-TiO₂ NPs, the samples were placed on a piezoelectric stage of

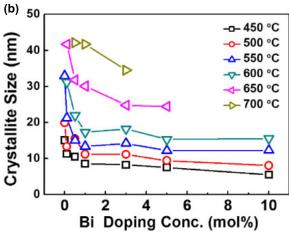
²Center for Reliability Sciences and Technologies, Chang Gung University, Taoyuan 33302, Taiwan

³Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan

^{*}E-mail: minachungwu@mail.cau.edu.tw

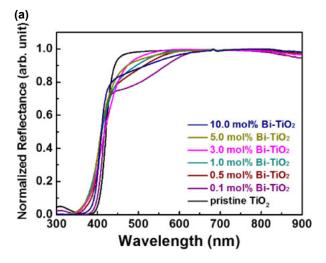
Fig. 1. (Color online) Raman spectra of pristine TiO₂ and various Bi–TiO₂ with different doping concentrations calcined at 650 °C.


Raman spectrometer (UniRAM UniDron) and were excited by a 50 mW 532 nm selective laser melting (SLM) continuous-wave (CW) diode-pumped solid state (DPSS) laser. The laser beam was focused with a 50X objective lens (Nikon plane objective, NA $\approx 0.55,~\rm WD \sim 8.2~\rm mm$). The diameter of the focused laser beam was about 10 µm. To observe the crystal structure, X-ray diffractometer (Bruker D2 phaser with Xflash 430) was used. UV-vis reflectance spectra of various Bi-TiO2 samples were measured by UV-vis spectroscopy (Jasco V-630) in the 300–900 nm wavelength range.


To observe the photocatalytic activity, the Bi-TiO₂ NPs were tested by the degradation of methyl orange (Acros Organics, pure). In the experiment, 20.0 mg of catalyst was sonicated for 10 min in 150 mL of 1.0 mg/L methyl orange aqueous solution. The mixture was kept at room temperature. The suspension was irradiated with UV lamps (Sankyo Denki F8T5BL UV-A lamp, the wavelength of maximum emission was at ~352 nm and the power was ~8 W) under vigorous stirring and ambient conditions. For UV source, two lamps were placed above the reactor. The distance between lamp and reactor is about 10.0 cm. Before the actual photodegradation experiments, the suspensions were left to relax for 10 min in order to minimize the error of the dye concentration measurements caused by initial surface adsorption. After centrifuging for 15 min at 5000 rpm, the absorption spectrum of the retained methyl orange and its derivatives in the supernatant was recorded by absorption spectrophotometer (Jasco V-630) in the 300-900 nm wavelength range.

3. Results and discussion

Bi–TiO₂ NPs calcined at 650 °C were analyzed by Raman spectroscopy to observe the vibrational information that is specific to the chemical bonds and symmetry of molecules (Fig. 1). Raman spectrum of pristine TiO₂ shows that it merely has single rutile phase. While bismuth doping concentration increases, rutile phase will transform into anatase phase. As the doping concentration up to 10 mol % at calcination temperature of 650 °C, the bismuth dopant leads to form the multiple phases consisted of bismuth titanate (Bi₂Ti₂O₇), rutile TiO₂ and anatase TiO₂.


The crystal structures of $Bi-TiO_2$ NPs calcined at 650 °C were characterized by XRD, and their XRD patterns are

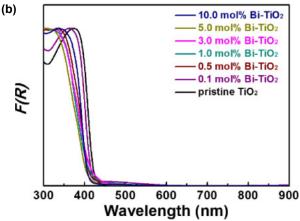
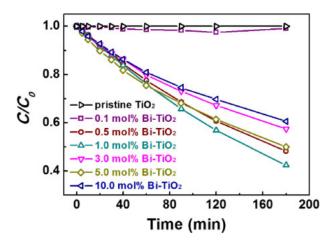


Fig. 2. (Color online) (a) XRD patterns of pristine TiO_2 and various $Bi-TiO_2$ with various doping concentrations calcined at 650 °C. (b) Estimated crystallite size for (101) plane of anatase TiO_2 phase.

shown in Fig. 2(a). When the calcination temperature is at $650\,^{\circ}$ C, the pristine TiO_2 NPs is individual rutile phase. Once bismuth was doped to TiO_2 , the intensity of anatase TiO_2 phase increased while the rutile phase decreased and finally


Fig. 3. (Color online) (a) Reflection spectra of pristine TiO₂ and various Bi–TiO₂ with several doping concentration calcined at 650 °C. (b) Kubelka–Munk function of pristine TiO₂ and various Bi–TiO₂.

disappeared. However, the rutile TiO2 phase is restrained until the Bi doping concentration is higher than 10.0 mol %. High concentration bismuth doping causes the formation of mixed phase, including $Bi_2Ti_2O_7$, $^{32-34}$) rutile TiO_2 and anatase TiO2. Aiming to discover the bismuth doping effect for crystal structure, we predict the crystallite size of (101) plane in anatase TiO2 phase by using Debye-Scherrer equation as shown in Fig. 2(b).³⁵⁾ In addition, the crystallite size of (101) plane in anatase TiO₂ phase were calculated using the XRD patterns of various Bi-TiO2 NPs calcined at different temperatures (Fig. S1 in the online supplementary data at http://stacks.iop.org/JJAP/56/04CJ01/mmedia). For high temperature calcination process, it leads to the formation of large particles. However, the crystallite size becomes dramatically smaller, and it becomes stable after the doping concentration larger than 3.0 mol %.

The reflection spectra of various $Bi-TiO_2$ NPs show significantly blue-shift [Fig. 3(a)]. The Kubelka–Munk function, F(R), gives the optical absorbance of various $Bi-TiO_2$ to be approximated from its reflectance.

$$F(R) = \frac{(1-R)^2}{2R} = \frac{k}{s} = \frac{Ac}{s}$$

Here, R is the reflectance, k is the absorption coefficient, s is the scattering coefficient, c is the concentration of the absorbing species, and A is the absorbance. The relation-

Fig. 4. (Color online) Activities of the pristine TiO₂ and various Bi–TiO₂ with various doping concentrations calcined at 650 °C over the photodegradation of methyl orange under UV irradiation.

ship between the concentrations and the reflectance of various $Bi-TiO_2$ is shown in Fig. 3(b). Rutile TiO_2 possesses high absorption and its band gap is about 3.0 eV which is narrower than 3.2 eV of anatase TiO_2 .³⁷⁾ From Fig. 3, the reflectance change is on account of the varying of crystal structures including anatase, rutile and $Bi_2Ti_2O_7$ in several doping concentrations.

Aiming to observe the photocatalytic performance, Bi-TiO₂ NPs with different doping concentration were tested to find the highest photocatalytic activity under UV irradiation. For the photocatalytic activity of various Bi-TiO₂ NPs, the absorption spectra of methyl orange as a function of UV irradiation time were recorded. The absorbance at $\lambda = 464 \text{ nm}$ was used to calculate the methyl orange concentration by a calibration curve measured previously. The color of suspension is changed from the initial orange color to colorless. The C/C_0 curve, where C_0 is the initial concentration and C is the concentration of the dye at testing time t, the photodegradation percentages of methyl orange at different time are shown in Fig. 4. The photodegradation test indicated that 1.0 mol % Bi-TiO₂ has the highest degradation performance. High bismuth concentration doping resulted in the destruction of crystal structure, which impeded the electron/hole transport for the 10.0 mol \% Bi-TiO₂.

In order to find out the bismuth doping effect on crystal structure, we synthesized a series of Bi-TiO₂ with different doping concentration calcined at various temperatures for further study. For the bulk TiO2 materials, the temperature of anatase–rutile phase transition is ~600 °C. ^{38,39)} However, the anatase-rutile phase transition temperature of the synthesized TiO₂ nanoparticles in our study is only ~550 °C. When the material dimension decreases towards the nanoscale, the crystal structure transition temperature could also reduce with decreasing the material dimension. For the Bi₂O₃-TiO₂ system studied by Kargin group, ⁴⁰⁾ they reported that Bi₂Ti₂O₇ decomposes to Bi₂Ti₄O₁₁ and Bi₄Ti₃O₁₁ during 700–1000 °C. Once the temperature is above 1000 °C, Bi₂Ti₂O₇ will appear again. In our study, the phase diagram of Bi-TiO2 was draw according to the XRD data as shown in Fig. 5. Under the calcination temperature of 500 °C, all Bi-TiO₂ NPs are still anatase TiO₂ phase even the doping concentration is as high as 10.0 mol %. When the calcination

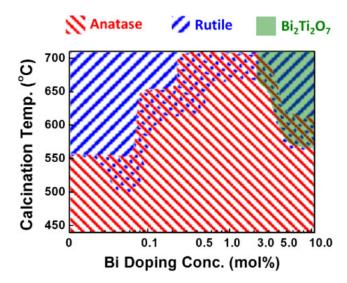


Fig. 5. (Color online) Phase diagram of ${\rm TiO_2}$ doped with different bismuth concentrations and calcination temperatures.

temperature is above 550 °C, the crystal structure changes from anatase to rutile for low doping concentration Bi–TiO₂ NPs (<0.1 mol % doping concentration). Moreover, with the increasing of bismuth doping concentration, the anatase TiO₂ phase will appear again and finally decrease at high doping concentration. Once the anatase TiO₂ decreases, bismuth titanium (Bi₂Ti₂O₇) and rutile TiO₂ will appear at higher doping concentration (>5.0 mol %) and higher calcination temperature (>600 °C). Hence, bismuth doping concentration and calcination temperature will affect the formation of multiple phases for Bi–TiO₂, including anatase TiO₂, rutile TiO₂ and Bi₂Ti₂O₇.

4. Conclusions

We developed a series of $Bi-TiO_2$ NPs successfully and studied their crystal structure and photocatalytic activity. The photocatalytic activity can be easily modified by varying the bismuth doping concentration. By combining the XRD diffraction analysis, a simple phase diagram for various $Bi-TiO_2$ NPs in doping concentration versus calcination temperature is provided. It can be useful for further study in crystal structure and related photocatalytic applications.

Acknowledgements

The authors appreciate Mr. Shih-Han Huang and Mr. Yu-Kai Tseng for the preparation of Bi–TiO₂ NPs and Dr. Ming-Tao Lee group (BL-13A1) at National Synchrotron Radiation Research Center for useful discussion. The authors wish to acknowledge the financial support of Ministry of Science and Technology of Taiwan (MOST 105-2221-E-182-011, MOST 105-2632-E-182-001, and MOST 105-3113-E-002-010) and Chang Gung Memorial Hospital, Linkou (CMRPD2F0161, CMRPD2E0072, and BMRPC74).

- 1) D. Bahnemann, Sol. Energy 77, 445 (2004).
- 2) D. Chatterjee and S. Dasgupta, J. Photochem. Photobiol. C 6, 186 (2005).
- K. Ohkawa, W. Ohara, D. Uchida, and M. Deura, Jpn. J. Appl. Phys. 52, 08JH04 (2013).
- S. Kogoshi, S. Araki, S. Yazawa, T. Nakano, T. Takeuchi, N. Katayama, Y. Kudo, and T. Nakanishi, Jpn. J. Appl. Phys. 53, 098001 (2014).
- 5) A. Fujishima and K. Honda, Nature 238, 37 (1972).
- P. K. Song, Y. Irie, Y. Sato, and Y. Shigesato, Jpn. J. Appl. Phys. 43, L358 (2004).
- 7) M. Zimmermann and G. Garnweitner, CrystEngComm 14, 8562 (2012).
- S. B. Rawal, S. Bera, D. Lee, D.-J. Jang, and W. I. Lee, Catal. Sci. Technol. 3, 1822 (2013).
- M. Zhang, J. Hou, J. Wu, and J. Yang, Jpn. J. Appl. Phys. 53, 115505 (2014).
- 10) A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009).
- J.-Y. Liao, J.-W. He, H. Xu, D.-B. Kuang, and C.-Y. Su, J. Mater. Chem. 22, 7910 (2012).
- T. Ochiai, T. Hoshi, H. Slimen, K. Nakata, T. Murakami, H. Tatejima, Y. Koide, A. Houas, T. Horie, Y. Morito, and A. Fujishima, Catal. Sci. Technol. 1, 1324 (2011).
- 13) U. Shaislamov and B. L. Yang, Int. J. Hydrogen Energy 38, 14180 (2013).
- 14) H. Sheng, Q. Li, W. Ma, H. Ji, C. Chen, and J. Zhao, Appl. Catal. B 138–139, 212 (2013).
- X. Sun, Q. Sun, Y. Li, L. Sui, and L. Dong, Phys. Chem. Chem. Phys. 15, 18716 (2013).
- M. Ozawa, H. Matui, and S. Suzuki, Jpn. J. Appl. Phys. 55, 01AG04 (2016).
- R. G. F. Costa, C. Ribeiro, and L. H. C. Mattoso, J. Appl. Polym. Sci. 127, 4463 (2013).
- T. Shibata, H. Irie, M. Ohmori, A. Nakajima, T. Watanabe, and K. Hashimoto, Phys. Chem. Chem. Phys. 6, 1359 (2004).
- 19) Z. Zhu and R.-J. Wu, J. Taiwan Inst. Chem. Eng. 50, 276 (2015).
- M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renewable Sustainable Energy Rev. 11, 401 (2007).
- T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, and Y. Taga, Jpn. J. Appl. Phys. 40, L561 (2001).
- 22) M.-C. Wu, J. Hiltunen, A. Sápi, A. Avila, W. Larsson, H.-C. Liao, M. Huuhtanen, G. Tóth, A. Shchukarev, N. Laufer, Á. Kukovecz, Z. Kónya, J.-P. Mikkola, R. Keiski, W.-F. Su, Y.-F. Chen, H. Jantunen, P. M. Ajayan, R. Vajtai, and K. Kordás, ACS Nano 5, 5025 (2011).
- W. Avansi, R. Arenal, V. R. de Mendonca, C. Ribeiro, and E. Longo, CrystEngComm 16, 5021 (2014).
- 24) M.-C. Wu, J.-S. Chih, and W.-K. Huang, CrystEngComm 16, 10692 (2014).
- 25) M. Asemi and M. Ghanaatshoar, Appl. Phys. A 122, 853 (2016).
- M.-C. Wu, W.-C. Chen, T.-H. Lin, K.-C. Hsiao, K.-M. Lee, and C.-G. Wu, Sol. Energy 135, 22 (2016).
- 27) J. H. Lee, H. Lee, and M. Kang, Mater. Lett. 178, 316 (2016).
- Y. Chen, D. Chen, J. Chen, Q. Lu, M. Zhang, B. Liu, Q. Wang, and Z. Wang, J. Alloys Compd. 651, 114 (2015).
- T. S. Natarajan, K. Natarajan, H. C. Bajaj, and R. J. Tayade, J. Nanopart. Res. 15, 1669 (2013).
- 30) Y. Wu, G. Lu, and S. Li, J. Phys. Chem. C 113, 9950 (2009).
- W. Wang, D. Zhu, Z. Shen, J. Peng, J. Luo, and X. Liu, Ind. Eng. Chem. Res. 55, 6373 (2016).
- 32) W. F. Yao, H. Wang, X. H. Xu, J. T. Zhou, X. N. Yang, Y. Zhang, and S. X. Shang, Appl. Catal. A **259**, 29 (2004).
- Y. Zhang, Y. Zhang, B. Fu, M. Hong, and M. Xiang, Ceram. Int. 41, 10243 (2015).
- 34) W. S. Al-Arjan, M. M. F. Algaradah, J. Brewer, and A. L. Hector, Mater. Res. Bull. 74, 234 (2016).
- 35) A. L. Patterson, Phys. Rev. 56, 978 (1939).
- 36) V. Barron and J. Torrent, Eur. J. Soil Sci. 37, 499 (1986).
- 37) L. G. Devi and R. Kavitha, Appl. Catal. B 140-141, 559 (2013).
- 38) J. C. Jamieson and B. Olinger, Am. Mineral. 54, 1477 (1969).
- 39) D. A. H. Hanaor and C. C. Sorrell, J. Mater. Sci. 46, 855 (2011).
- Y. F. Kargin, S. N. Ivicheva, and V. V. Volkov, Russ. J. Inorg. Chem. 60, 619 (2015).